Gravitational Lenses

Slides will be on web...

From blackboard

Lens equation: $\theta-\beta=\alpha \frac{D_{l s}}{D_{s}}$
We would like to know things between the vectors in the source plane, and vectors in the image plane. θ is basically a vector in the image plane, while β is a vector in the source plane. So we can define a vector \underline{y} in the source plane, and a vector \underline{x} in the image plane.
$\underline{x}-\underline{y}=\underline{\alpha}$
where $\underline{\alpha}$ is some sort of relational vector. "For fun", differentiate that wrt x.
$\delta_{i j}-\frac{\partial \underline{y}}{\partial \underline{x}}=\frac{\partial \underline{\alpha}}{\partial \underline{x}}$
(Differentiating a vector wrt itself will give the Kronecker delta.) We are after the second term, but we need to know the last term.
As $\alpha=\nabla \psi$, then $\frac{\partial \alpha}{\partial x}$ will give the second derivatives of ψ. Now define three things

1. Convergence $\kappa=\frac{1}{2} \nabla^{2} \psi\left(=\frac{1}{2} \frac{\partial^{2} \psi}{\partial x_{1}{ }^{2}}+\frac{\partial^{2} \psi}{\partial x_{2}{ }^{2}}\right)$
2. Shear (part 1) $\gamma_{1}=\frac{1}{2}\left(\frac{\partial^{2} \psi}{\partial x_{1}{ }^{2}}-\frac{\partial^{2} \psi}{\partial x_{2}{ }^{2}}\right)$
3. Shear (part 2) $\gamma_{2}=\frac{\partial^{2} \psi}{\partial x_{1} \partial x_{2}}$

Hence we get:
$\frac{\partial \underline{\alpha}}{\partial \underline{x}}=H=\left(\begin{array}{cc}\frac{\partial^{2} \psi}{\partial x_{1} \partial x_{1}} & \frac{\partial^{2} \psi}{\partial x_{2} \partial x_{1}} \\ \frac{\partial^{2} \psi}{\partial x_{1} \partial x_{2}} & \frac{\partial^{2} \psi}{\partial x_{2} \partial x_{2}}\end{array}\right)=\left(\begin{array}{cc}\kappa-\gamma_{1} & \gamma_{2} \\ \gamma_{2} & \kappa+\gamma_{1}\end{array}\right)$
Hence,
$\frac{\partial \underline{y}}{\partial \underline{x}}=I-H=\left(\begin{array}{cc}1-\kappa+\gamma_{1} & -\gamma_{2} \\ -\gamma_{2} & 1-\kappa-\gamma_{1}\end{array}\right)$
(I is the identity matrix)
So if we know ψ, then we can work out the relation between vectors in the source and image frame, which subsequently lets you calculate the magnification.

